Estimation of parameters for trend-renewal processes
نویسندگان
چکیده
Methods of estimating unknown parameters of a trend function for trend-renewal processes are investigated in the case when the renewal distribution function is unknown. If the renewal distribution is unknown, then the likelihood function of the trend-renewal process is unknown and consequently the maximum likelihood method cannot be used. In such a situation we propose three other methods of estimating the trend parameters. The methods proposed can also be used to predict future occurrence times. The performance of the estimators based on these methods is illustrated numerically for some trend-renewal processes for which the statistical inference is analytically intractable.
منابع مشابه
Extended Geometric Processes: Semiparametric Estimation and Application to ReliabilityImperfect repair, Markov renewal equation, replacement policy
Lam (2007) introduces a generalization of renewal processes named Geometric processes, where inter-arrival times are independent and identically distributed up to a multiplicative scale parameter, in a geometric fashion. We here envision a more general scaling, not necessar- ily geometric. The corresponding counting process is named Extended Geometric Process (EGP). Semiparametric estimates are...
متن کاملDrift Change Point Estimation in the rate and dependence Parameters of Autocorrelated Poisson Count Processes Using MLE Approach: An Application to IP Counts Data
Change point estimation in the area of statistical process control has received considerable attentions in the recent decades because it helps process engineer to identify and remove assignable causes as quickly as possible. On the other hand, improving in measurement systems and data storage, lead to taking observations very close to each other in time and as a result increasing autocorrelatio...
متن کاملNonparametric estimation of time trend for repairable systems data
The trend-renewal-process (TRP) is defined to be a time-transformed renewal process, where the time transformation is given by a trend function λ(·) which is similar to the intensity of a nonhomogeneous Poisson process (NHPP). A nonparametric maximum likelihood estimator of the trend function of a TRP can be obtained much in the same manner as for the NHPP using kernel smoothing. But for a TRP ...
متن کاملParametric Bootstrap Methods for Estimating Model Parameters of Non-homogeneous Gamma Process
Non-Homogeneous Gamma Process (NHGP) is characterized by an arbitrary trend function and a gamma renewal distribution. In this paper, we estimate the confidence intervals of model parameters of NHGP via two parametric bootstrap methods: simulation-based approach and re-sampling-based approach. For each bootstrap method, we apply three methods to construct the confidence intervals. Through simul...
متن کاملTREND-CYCLE ESTIMATION USING FUZZY TRANSFORM OF HIGHER DEGREE
In this paper, we provide theoretical justification for the application of higher degree fuzzy transform in time series analysis. Under the assumption that a time series can be additively decomposed into a trend-cycle, a seasonal component and a random noise, we demonstrate that the higher degree fuzzy transform technique can be used for the estimation of the trend-cycle, which is one of the ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics and Computing
دوره 22 شماره
صفحات -
تاریخ انتشار 2012